Resistance to Systemic Inflammation and Multi Organ Damage after Global Ischemia/Reperfusion in the Arctic Ground Squirrel

نویسندگان

  • Lori K. Bogren
  • Jasmine M. Olson
  • JoAnna Carpluk
  • Jeanette M. Moore
  • Kelly L. Drew
چکیده

INTRODUCTION Cardiac arrest (CA) and hemorrhagic shock (HS) are two clinically relevant situations where the body undergoes global ischemia as blood pressure drops below the threshold necessary for adequate organ perfusion. Resistance to ischemia/reperfusion (I/R) injury is a characteristic of hibernating mammals. The present study sought to determine if arctic ground squirrels (AGS) are protected from systemic inflammation and multi organ damage after CA- or HS-induced global I/R and if, for HS, this protection is dependent upon their hibernation season. METHODS For CA, rats and summer euthermic AGS (AGS-EU) were asphyxiated for 8 min, inducing CA. For HS, rats, AGS-EU, and winter interbout arousal AGS (AGS-IBA) were subject to HS by withdrawing blood to a mean arterial pressure of 35 mmHg and maintaining that pressure for 20 min before reperfusion with Ringers. For both I/R models, body temperature (Tb) was kept at 36.5-37.5°C. After reperfusion, animals were monitored for seven days (CA) or 3 hrs (HS) then tissues and blood were collected for histopathology, clinical chemistries, and cytokine level analysis (HS only). For the HS studies, additional groups of rats and AGS were monitored for three days after HS to access survival and physiological impairment. RESULTS Rats had increased serum markers of liver damage one hour after CA while AGS did not. For HS, AGS survived 72 hours after I/R whereas rats did not survive overnight. Additionally, only rats displayed an inflammatory response after HS. AGS maintained a positive base excess, whereas the base excess in rats was negative during and after hemorrhage. CONCLUSIONS Regardless of season, AGS are resistant to organ damage, systemic inflammation, and multi organ damage after systemic I/R and this resistance is not dependent on their ability to become decrease Tb during insult but may stem from an altered acid/base and metabolic response during I/R.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Systemic Administration of Curcumin on Ischemia-Reperfusion Injury in Ovaries: An Animal Model Study

Objective-Ovarian torsion must be diagnosed and treated as much early as possible. The aim of the present study was to investigate effects of interaperitoneal administration of curcumin on ischemia-reperfusion injury in ovaries. Design- Experimental Study Animals- Twent-four healthy female Wistar rats Procedures- Twent-four healthy female Wistar rats weighing approximately 260...

متن کامل

Effect of Cyperus rotundus on ischemia-induced brain damage and memory dysfunction in rats

Objective(s):Global cerebral ischemia-reperfusion injury causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the possible neuroprotective effects of the ethanol extract of Cyperus rotundus (EECR) on a model of global transient ischemia in rat, by evaluating the pathophysiology of the hippocampal tissue and spatial memory. Materials and Methods: Treatment ...

متن کامل

Effect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat

Objective(s) The brief interruption of cerebral blood flow causes permanent brain damage and behavioral dysfunction. The hippocampus is highly vulnerable to ischemic insults, particularly the CA1 pyramidal cell layer. There is no effective pharmacological strategy for improving brain tissue damage induced by cerebral ischemia. Previous studies reported that pentoxifylline (PTX) has a neuroprot...

متن کامل

Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury.

ISCHEMIA contributes to the pathophysiology of many conditions faced by anesthesiologists, including myocardial infarction, peripheral vascular insufficiency, stroke, and hypovolemic shock. Although restoration of blood flow to an ischemic organ is essential to prevent irreversible cellular injury, reperfusion per se may augment tissue injury in excess of that produced by ischemia alone. For ex...

متن کامل

The arctic ground squirrel brain is resistant to injury from cardiac arrest during euthermia.

BACKGROUND AND PURPOSE Hetereothermic mammals tolerate hypoxia during euthermy and torpor, and evidence suggests this tolerance may extend beyond hypoxia to cerebral ischemia. During hibernation, CA1 hippocampal neurons endure extreme fluctuations in cerebral blood flow during transitions into and out of torpor as well as reductions in cerebral blood flow during torpor. In vitro studies likewis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014